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Abstract

Center-cracked panels loaded in biaxial tension are examined in this paper. Calibration relations for the
J integral and the Q constraint factor are presented for a Ramberg-Osgood power law hardening material
under plane stress and plane strain loadings. Two cases are examined: an isolated crack and a periodic array
of cracks both under biaxial loading conditions. The latter has previously been studied for plane stress
;;onditions. A number of different J estimation schemes are proposed based on the remote load and
jisplacement and their dependence on geometry, biaxiality, and material properties is discussed. The
variation of constraint, as characterised by Q, is also presented for plane stress and plane strain conditions.
Simple slip line field solutions are derived for perfectly plastic conditions and the resulting limit load solutions
He compared with numerically determined values. Implications for failure of cracked plates under biaxial
loading are discussed. :!) 1999 Elsevier Science Ltd. All rights reserved.

l. Introduction

With the increased interest in the effect of 'state of stress' or constraint on fracture toughness,
here has been a corresponding increase in interest in biaxial testing. By varying the magnitude of
.he load applied parallel to the crack (See Fig. 1) different levels of constraint can be generated.
The behaviour of biaxially loaded panels has been examined in Lee and Liebowitz (1977) where
dastic-plastic calculations were carried out to explain the dependency of fracture toughness on
biaxiality observed in Kibler and Roberts (1970). In Jansson (1986), J solutions for a periodic
array of cracks under plane stress conditions were obtained and in Dowling (1987) J solutions for
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Fig. I. Geometries examined, (a) isolated crack (configuration A) and (b) periodic array of cracks (configuration B).

biaxially loaded cracks in infinite bodies were presented. More recently, the effect of biaxiality on
fracture toughness has been examined in Chao and Lam (1996), Wright et al. (1994) and Pennell
et al. (1994). However, despite the large amount of research in the area of biaxial loading, solutions
for J and the constraint parameter Q, (O'Dowd and Shih 1991), for biaxially loaded plates are
rather limited. As discussed later, the elastic T stress also used to characterise state of stress effects
(Betegon and Hancock, 1991), may be obtained simply by adding the magnitude of the horizontal
stress to the T stress value for a uniaxially loaded plate.

In this paper, J and Q solutions determined by finite element analysis are presented. Results are
presented for plane stress and plane strain conditions and for two types of biaxial loading. The
two geometries are illustrated in Fig. 1. The first case, henceforth designated configuration A, is
an isolated crack subjected to remote biaxial stress a':: and (J\~~ and the second case, designated
configuration B, has the remote boundaries held straight, but free to slide in the tangential direction.
The latter loading condition, corresponds to an infinite periodic array of cracks and has been used
in Jansson (1986) to approximate the loading condition of a cruciform specimen with a thinner
center-section. The biaxiality is defined by the ratio, B = (J~ j(J';", which is equal to F,IF,. when the
height of the specimen 2L is equal to the width 2W.· .

2. Material properties and finite element model

The material is characterised by a Ramberg Osgood power law hardening model. Under uniaxial
tension this is represented by

(1)
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This material law is in effect a non-linear elastic law and can be applied to a power law plastic
material (flow theory material) under conditions of proportional loading. In this work, the value
of IX was taken to be 1, the Young's modulus (E = (Jo/8o) and was 500 (Jo and Poisson's ratio was
0.3.

A focused finite element mesh, with four noded quadrilaterals similar to that used in O'Dowd
and Shih (1991) is employed. A typical mesh contains 1500 nodes and 1200 elements; the smallest
element used was 1/1000 of the crack length. The crack length to specimen width, a/ W, ratio ranges
from 0.1 to 0.5. The majority of the data presented is for a specimen height to width, L/ W, ratio
of 2. As will be seen, for L/ W ;?: 2, the J normalisations are independent of L/ W. The specimens
are loaded proportionally with (J~ = B; for configuration A and F, = (LB/W)Fyfor configuration
B. The finite element program ABAQUS (1996) has been used to obtain the solution to this
boundary value program. Results for the normalising parameters will be presented under conditions
of large scale plasticity when the plastic strains dominate and the material behaviour is very close
to pure power law behaviour. Under these conditions the standard EPRI approach for pure power
law materials (Kumar et a!., 1981) is relevant and the IJ value (Turner, 1973) is independent of
load.

3. J Normalisations

Biaxial loading of a periodic array of cracks (configuration B) was studied in Jansson (1986)
under conditions of plane stress. A normalisation of the following form was employed:

. . ((Jcn)n- I ((J",,)2J=aY(Jo£o(1-a/W).!I(n,a/W,B) ~ ~

where}' = I and (JlI1 is the nominal remote stress normal to the crack,

FI(J = ---'_ ..-
I'n t(W-a)

where t is specimen thickness and (Jen is the nominal von Mises stress, defined in plane stress as

Nith (Jxn the nominal remote stress parallel to the crack,

F,
(J =

XII tL

(2)

(3)

(4)

(5)

.n the current work, plane strain conditions are also examined and the nominal von Mises stress
is given by

""ith

(Jzn = a.5(a", + (Jl'n)

(6)

(7)
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and}' in eqn. (2) is 3/4. The above normalisation has the property that it reduces to the standard
EPRI scheme of Kumar et al. (1981) for uniaxial loading and that the function}; is independent
of biaxiality for n = I, i.e. the stress parallel to the crack does not effect K or J for linear elastic
conditions. While this normalization works well for plane stress conditions, it will be seen that it
results in very large values ofr; for high biaxiality ratios in plane strain. For this reason a second
normalisation is investigated which is closer in form to the EPRI solutions,

(8)

where Fro is the appropriate limit load which will be determined numerically (a brief discussion of
limit loa.d behaviour follows in Section 4). In this case, hI will not be independent ofbiaxiality for
n = I as the limit load will depend on B.

Two other normalisations for J were examined which used modified versions of the standard 11
approach (e.g. Turner, 1973; Rice et al., 1973) for J evaluation,

/11 11 I (f f ' d )J = work done = ------:-- F, d~,+ }, ~,
( W - a) f (W - a)t . . . (9)

With ~\ and ~x the average remote displacements corresponding to Fy and F, respectively. Since
the loading is proportional, FjF, is constant, the two terms in the above equation are not
independent. It may prove simpler to combine F, and F, to write

(10)

This allows calculation of J from a record of a single load displacement history. Of course in
general/1l and 112 from eqns (9) and (10) will differ.

4. Estimates of limit load

The limit load is used in the normalisation for J proposed in the previous section. Numerical
solutions for the limit load will be used in the paper, but it also proves useful to derive approximate
limit load solutions.

For a center-cracked panel under uniaxial loading, the values of the stresses ahead of the crack
may be determined from the plane strain slip line fields, giving

O'.'T = 0 (11)

where 0'0 is the von Mises yield stress. For biaxial loading, 0'';' = BO'~ we can add a hydrostatic
stress to the stress field in the forward sector, - n/4 < () < n/4, giving,

(12)

Note that a hydrostatic stress does not effect yield so the yield criterion is unaffected. By applying
global equilibrium to the above field, we obtain
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Fig. 2. Near tip finite element stress fields for perfectly plastic material.
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(13)

2ao ( I )
ay = j3 1- (1-a/W)B

2aO ( B(1-a/W) )
ax = j3 1-B(1-a/W)

The stress fields for three biaxialities, B = 0, 0.5 and 1.0, determined from a finite element
analysis of an elastic perfectly plastic material, are shown in Fig. 2 or a/ W = 0.5. Here the angular
variation of the stresses close to the crack tip is plotted. The stresses vary somewhat with distance
from the crack tip and have been plotted at ria = 0.05. The increase in near tip constraint (i.e. the
values of ax and a,) with B is evident. Note that for B = I the stress fields approach the Prandtl
stress field which is considered to be the limiting distribution for a crack in a rigid perfectly plastic
material (Hutchinson, 1968). It may be seen that, though not identical, the stress in the forward
sector, - n/4 < 0 < n/4, are well represented by eqn (13).

If it is assumed that the stress fields of eqn (13) extend over the uncracked ligament, the limit
load, F"o may be determined as

2ao (W-a)t
FlO = /31=-BTi-=a/W) (14)

'V

Equation 14 reduces to the well known limit load expression for a uniaxially loaded panel when
B = O. Note the strong dependence of the limit load on B and for a/ W -+ 0, B = I, F vo -+ 00.

The ratio between the numerically determined limit load and the estimate given by eqn (14) is
plotted in Fig. 3(a) for a range ofcases. It may be seen that apart from the B = 1case for a/ W < 0.5
the numerical limit load is close to the value given by eqn (14). The reason for the poor agreement
:or the case of B = I is illustrated in Fig. 4. Here the zone of intense plastic strain determined from
:he finite element analysis is shown for a number of cases (highest plastic strains are in red). For
:he case of B = 1, a/ W = 0.1 and 0.25, it may be seen that the plastic zone does not extend across
he ligament, but instead surrounds the crack tip. Hence the assumption on which eqn (14) is
)ased is invalid and the limit load is considerably overestimated. It is clear therefore that eqn (14)
s not a lower bound limit load solution, despite the fact that a solution apparently satisfying yield
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Fig. 3. (a) Numerical limit load normalised by approximate limit load solution, eqn (14). (b) Normalised value of plane
strain and plane stress limit load, FlO' Finite element results indicated by the symbols.

has been obtained. However, it should be pointed out that equilibrium is not guaranteed to be
satisfied in the back sector, Te/2 < () < - Te/2, since for a stress free crack face, O'y = 0 and, for
continuity of stress, O'x = BO':' . It may be shown that with these stresses, the yield criterion in the
area above and below the crack will be satisfied and a lower bound limit load obtained if
B(2-a(W) ~ 1. For a/W = 0.5 this requires B ~ 0.66 and for a(W = 0.1, B ~ 0.53 which is
consistent with the results shown in Fig. 3(a).

For the case of plane stress, the near tip fields may be determined assuming that 0'x = BO':' and
invoking the von Mises yield condition and global equilibrium. We then obtain

0'0

JI-B(1-a/W) +B2(1-a/W)2

BO'o
0'-, ='~-----'----2--"'---o

v l - B(1-a/W)+B (1-a/W)-

The limit load obtained from this stress field is then,

(15)

O'o(W-a)t
F"o=-==-===-----=== (16). ~!I -B(1-a/W)+B2(1-a/W)2

The above limit load solution has also been proposed in DaIle Donne and D'Oker (1994).
Our finite element solutions are closely in agreement with eqn (16) for all the cases examined.

This is illustrated in Fig. 3(b) for a/ W = 0.1. The plane strain result, eqn (14), is also shown. Here
the symbols are the FE solutions and the solid lines represent eqns (14) and (16). Note that, in
contrast to the plane strain result, eqn (16) predicts a weak dependence of the limit load on B. For
B = 1, a/W -+ 0, F\>l,-+ 0'0 (W-a) the same result as for B = O. In the sections which follow the
numerically determined limit load is used as the normalising load and the same limit loads have
been used for configurations A and B, though in practise they will differ from one another. For
example for B = 1, a/ W = 0.1 the limit load for configuration B under plane strain is 5% higher
than for configuration A.
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Fig. 4. Plastic zones in biaxially loaded panels, determined from finite element analysis, for a perfectly plastic material.
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5. Results of J normalisations

The results of the different normalisations are given in Tables 1-6 for a range of a/ W ratios,
hardening exponents and biaxiality ratios. In Fig. 5 the values of h1 for B = 0 are plotted under
plane strain and plane stress conditions. For each configuration, solutions were obtained for n = 1,
5, 10 and 20. (Note that h, =.j; when B = 0.) Figure 5(a) and (b) correspond to configuration A,
remote boundaries free and Fig. 5(c) and (d) correspond to Configuration B, remote boundaries
straight.

There are some differences (maximum of about 20%) between the results in Fig. 5(a) and (b)
and the EPRI solution particularly for high nvalues and deep cracks, a/ W = 0.5. Similar differences
have been reported in Lei and Ainsworth (1997) and Lee and Bloom (1993) for a number of
geometries at large n values. In Fig. 5(d) the normalisation in Jansson (1986) is included for
comparison. The close correspondence may be seen. It should be pointed out, however, that in
this case there are also some differences between the present results and those in Jansson (1986).
This is due to the different L/ W ratios employed. It is stated in Jansson (1986) that the J
normalisation is independent of L/ W when L/ W:?: 1. However, our results suggest that this is not
in fact the case. In Fig. 6 hI is plotted against L/W for n = 10 and 20, a/W = 0.5. Here the value
of h, normalised by the value at L/ W = 3 is plotted for 1 < L/ W < 3. It is seen that the solution
does not converge to a constant value until L/ W :?: 2. The solutions obtained from our analysis
for L/W = I agree with those in Jansson (1986) to within 2%.

In Figs 7 and 8, the II function defined in eqn (2) is plotted for the four configurations with
B = 0.5 and 1 respectively. Again the good agreement with the trend of the Janssen result may be

Table I
J normalisation functions for n = 4, Configuration A

Plane strain Plane stress

B a/W h] f; IJ] 1J2 h] fl IJI 1J2

0 0.1 4.84 4.84 0.198 0.198 4.69 4.69 0.193 0.193
0 0.25 3.48 3.48 0.479 0.479 3.24 3.24 0.453 0.453
0 0.5 2.13 2.13 0.715 0.715 1.95 1.95 0.695 0.695

0.5 0.1 14.2 4.29 0.810 0.425 5.70 4.29 0.234 0.234
0.5 0.25 6.96 2.72 1.38 0.830 3.67 2.81 0.515 0.507
0.5 0.5 2.98 1.68 1.18 0.875 2.09 1.70 0.775 0.737

0.75 0.1 27.3 4.38 2.72 0.999 4.97 3.88 0.185 0.239
0.75 0.25 12.5 2.40 2.05 1.10 3.50 2.64 0.414 0.507
0.75 0.5 3.68 1.44 1.50 0.952 2.12 1.62 0.695 0.734

1.0 0.1 12.7 80.7 5.82 12.2 4.02 3.66 0.132 0.260
1.0 0.25 8.50 5.77 2.17 3.93 3.32 2.70 0.304 0.547
1.0 0.5 5.10 1.28 1.64 1.13 3.24 2.63 0.296 0.533
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Table 2
J normalisation functions for n = 10, Configuration A

Plane strain Plane stress
._-----~

B ajW hi II 111 112 hi /; 111 112

0 0.1 5.70 5.70 0.342 0.342 5.66 5.66 0.339 0.339
0 0.25 3.19 3.19 0.804 0.804 2.98 2.98 0.777 0.777
0 0.5 1.63 1.63 0.903 0.903 1.52 1.52 0.902 0.902

0.5 0.1 14.4 4.37 1.38 0.739 6.37 4.79 0.377 0.374
0.5 0.25 5.51 2.15 1.54 0.967 3.11 2.38 0.826 0.787
0.5 0.5 2.23 1.26 1.27 0.953 1.60 1.30 0.986 0.915

0.75 0.1 20.3 5.39 2.85 1.31 5.15 4.02 0.257 0.326
0.75 0.25 8.38 1.60 2.14 1.03 2.78 2.10 0.641 0.721
0.75 0.5 2.73 1.07 1.56 0.977 1.57 1.20 0.961 0.910

1.0 0.1 5.51 105 4.12 7.78 3.92 3.57 0.153 0.296
1.0 0.25 5.05 60.0 1.61 2.82 2.41 1.96 0.395 0.644
1.0 0.5 3.51 0.877 1.92 1.01 1.48 1.11 0.857 0.893

- ~------~--_._ .._._._--------_."._.-_...... ,._- --, .. __ ...__......_._-_..__._---_ .. _-------- -._-_._--- ------~

Table 3
J normalisation functions for n = 20, Configuration A

Plane strain Plane stress

B a/W hi I, 111 112 h, I, 11, 112
-----_..._--_.__._-_.

0 0.1 5.52 5.52 0.603 0.603 5.60 5.60 0.605 0.605
0 0.25 2.49 2.49 0.946 0.946 2.43 2.43 0.944 0.944
0 0.5 1.25 1.25 0.965 0.965 1.22 1.22 0.965 0.965

0.5 0.1 11.9 3.59 1.66 0.924 5.97 4.49 0.625 0.613
0.5 0.25 4.12 1.61 1.58 0.989 2.60 1.99 1.01 0.949
0.5 0.5 1.69 0.953 1.31 0.983 1.33 1.08 1.04 0.966

0.75 0.1 15.6 9.60 2.67 1.38 4.24 3.31 0.388 0.480
0.75 0.25 6.13 1.17 2.22 1.02 2.16 1.63 0.938 0.974
0.75 0.5 2.06 0.803 1.60 0.998 1.30 0.996 1.03 0.965

1.0 0.1 1.58 IO~ 3.55 6.31 3.04 2.76 0.182 0.347
1.0 0.25 2.81 105 1.43 2.45 1.52 1.24 0.575 0.816
1.0 0.5 2.60 0.650 2.01 1.00 1.17 0.874 0.975 0.960
-------._---

seen for the plane stress case. As may be seen from Tables 2 and 3, the plane strain j; values are
very large for B = I and large values of n and therefore are not plotted. It is clear that the nominal
effective stress underestimates the influence of the load in this case. The use of the limit load as
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Table 4
J normalisation functions for n = 4, Configuration B

Plane strain Plane stress

B a/W hI (1 111 112 hI /1 111 112

0 0.1 4.38 4.38 0.180 0.180 4.33 4.33 0.179 0.179
0 0.25 2.35 2.35 0.342 0.342 2.45 2.45 0.357 0.357
0 0.5 0.811 0.811 0.423 0.423 1.16 1.16 0.542 0.542

0.5 0.1 11.3 3.42 0.665 0.344 5.52 4.16 0.227 0.227
0.5 0.25 3.75 1.46 0.958 0.550 3.33 2.55 0.475 0.471
0.5 0.5 0.893 0.502 0.861 0.597 1.69 1.38 0.696 0.687

1.0 0.1 12.6 79.9 4.96 6.85 4.02 3.65 0.132 0.260
1.0 0.25 8.38 5.69 2.26 2.56 3.20 2.60 0.293 0.528
1.0 0.5 3.22 0.804 1.22 1.23 2.03 1.52 0.525 0.716
_.._-----~----_ ...._--'"-

Table 5
J normalisation functions for n = 10, Configuration B

Plane strain Plane stress

B a/W hI II 111 1'/2 hi II 1'/1 1'/2
---------_..,,"',----'.'._--- -_._-----_._~-_._-~-~._--~----_._-------

0 0.1 3.88 3.88 0.240 0.240 3.90 3.90 0.241 0.241
0 0.25 0.935 0.935 0.400 0.400 1.07 1.07 0.446 0.446
0 0.5 0.0693 0.0693 0.421 0.421 0.314 0.314 0.791 0.791

0.5 0.1 6.75 2.04 0.817 0.426 5.83 4.38 0.348 0.347
0.5 0.25 0.852 0.333 0.950 0.564 2.51 1.92 0.748 0.742
0.5 0.5 0.0399 0.0224 0.801 0.554 0.917 0.745 0.899 0.898

1.0 0.1 4.53 105 3.86 3.90 3.89 3.54 0.151 0.294
1.0 0.25 4.32 51.3 1.70 1.74 2.31 1.88 0.384 0.627
1.0 0.5 0.666 0.166 1'{)9 1.10 1.42 1.06 0.846 0.888

_.__._----------------~--- ._~--_._---_.__ .- ---------,-,-- --------

Table 6
J normalisation functions for n = 20, Configuration B
-_.------_.__ ..__._._.._.

Plane strain Plane stress
_._- -------

B a/W hi fl 'II 1'/2 hI fl 1'/1 112

0 0.1 2.30 2.30 0.312 0.312 2.18 2.18 0.297 0.297
0 0.25 0.172 0.172 0.429 0.429 0.214 0.214 0.522 0.522
0 0.5 10- 3 10- 3 0.431 0.431 0.055 0.055 1.00 1.00
0.5 0.1 2.62 0.793 0.888 0.486 5.18 3.90 0.571 0.568
0.5 0.25 0.0603 0.0236 0.923 0.525 1.79 1.37 0.937 0.936
0.5 0.5 10-4 10 4 0.775 0.533 0.480 0.390 0.959 0.959
1.0 0.1 1.18 106 3.48 3.48 2.88 2.62 0.173 0.331
1.0 0.25 2.00 104 1.50 1.50 1.23 0.996 0.529 0.755
1.0 0.5 0.050 0.0125 1.05 1.05 1. 11 0.834 0.958 0.958
----
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Fig. 5. Normalisation functions. hi. for uniaxial loading, B = O.

normalising load, i.e., using eqn (8) seems more appropriate in this case, though the values of hI
obtained are still quite large (see Fig. 9).

The EPRI J estimation scheme described in Kumar et al. (1981) interpolates from the elastic
region to the fully plastic regime. The value of J in the elastic-plastic regime is obtained by adding
together the elastic J, Je, determined from K and the plastic J, Jp , determined from one of eqns
(2), (8), (9) or (10). A plastic zone correction may be applied to Je to obtain an improved estimate
for J as discussed in Kumar et al. (1981).

The results for the normalisation of eqns (9) and (10) are also shown in Tables 1-6. Again for
B = 0 the normalisations are equivalent. The standard value for f/ for a uniaxially loaded center
cracked-tension geometry is 1 but it may be seen for a power law hardening material, f/ approaches
unity only for shallow cracks and low hardening materials. Similar dependence of f/ on a/ Wand n
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have been reported in Kirk and Dodds (1991) for bend geometries. It may be seen in Tables 4-6
that for configuration B under plane stress conditions with biaxiality B = 0.5 the values of Y/l and
112 are almost identical. This is because under these conditions the remote displacement parallel to
the crack is negligible compared to the axial displacement. It may also be seen that in may cases
'71 is greater than Y/2, this is due to the remote displacement parallel to the crack being negative
even for biaxlality ratios as high as 0.75. This somewhat unexpected feature occurs mainly under
plane strain conditions and arises due to the necessity to maintain incompressibility of plastic flow.
The values of '71 and '72 become large for plane strain conditions and B = 1. However, the values
obtained vary sensibly with geometry and loading and are considered to be a useful normalisation
for this geometry.

6. Results of Q calculations

The Q parameter has been used to characterise constraint and size effects in crack geometries,
e.g. O'Dowd and Shih (1991), where the near tip stresses are characterised by two parameters J
and Q. It may be seen from the stress fields for a non-hardening material in Fig. 2 that the fields
depend strongly on the biaxiality in the plane strain case and similar features are seen for the
hardening material. The values of Q for n = 10 are shown in Figs 10 and 11 for the four con
figurations. Similar trends are seen for the other hardening exponents. In each case, Q is calculated
by subtracting the numerically determined O"y stress from the small scale yielding, T = 0 solution
at r/(J/O"y) = 2, (j = 0 and dividing by the reference stress O"y" Note that the small scale yielding
distribution depends on whether conditions are plane stress or plane strain. Further details of the
definition of the Q parameter are provided in O'Dowd and Shih (1991) and O'Dowd (1995). The
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effect ofload biaxiality on constraint in terms of the A 2 parameter has also been examined in Chao
and Ji (1995).

For the case of B = a it is seen that in the plane strain case the constraint drops rapidly with
increase in load. This well known feature has been presented elsewhere (O'Dowd and Shih, 1991;
Chao and Ji, 1995; Beteg6n and Hancock, 1991). The same effect is seen for the collinear array of
cracks, Fig. lO(d), although the loss of constraint is somewhat less in the latter case. Indeed for all
biaxiality levels the collinear array gives a higher Q value than the isolated crack. Results are
presented in Fig. 11, for plane stress with B = aand B = 0.5. The Q values for B = 1 are almost
identical to those of B = 0.5. It may be seen there is very little loss of constraint as we move to
fully yielded conditions. The lowest Q value is - 0.2 compared with -1.5 for plane strain at the
same level of J. This result is not unexpected-it was shown in Chao (1993) that the plane stress
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Fig. 8. Normalisation functions.t;. for B = I for plane stress conditions.

crack tip fields are characterised by J for a range of constraint levels (controlled by the magnitude
of the elastic T stress). The current analysis confirms that this feature carries over to finite
geometries. A direct comparison between the plane stress and plane strain stress field cannot be
made from Figs 10 and 11, since a different reference field has been used in each case to define Q.
For n = 10, a~~f/ao = 3.37 in plane strain and a~~j/ao = 1.75 in plane stress. Examination of Figs
10 and 11 implies that at high loads, the plane stress distribution may approach the plane strain
distribution.

7. Estimates of Q for plane strain using the elastic T stress

As discussed in Du and Hancock (1991) the elastic T stress provides a useful method of
estimating constraint. The T stress is linearly proportional to the applied load, T = f3(al Jf')a;;' and
the function f3(al Jf') has been tabulated for many geometries. Under plane strain conditions a one
to-one relationship for Q in terms of T is given in O'Dowd (1995) for n = 10.

(17)

For a biaxially loaded specimen, with applied stress a': parallel to the crack, by superposition,
T = T(aC:: = 0) +a~). Specifically, for the case when a'; = Ba';' we get

(18)

This allows a direct estimate of Q to be made. In Fig. 12 the comparison is made for the three
values of B examined under plane strain conditions and configuration A with n = 10. Similar
behaviour has been seen for the other n values, (n ~ 3). It may be seen that in most cases the
calculated Q value agrees well with the approximation from eqns (17) and (18). For the shallow
crack, with B = 0.5, it is seen that Q first decreases and then increases. This behaviour was pointed
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out in O'Dowd and Shih (1991) and is somewhat surprising in view of the fact that the T stress
decreases continuously. The reason for the observed behaviour may be seen by examining Fig. 13.
The variation of Q with normalised distance for B = 0.5, a/W = 0.1 and 0.5, for load levels from
contained yielding to fully yielded conditions is shown. The largest stress values in Fig. 13(a) and
(b) correspond to 0.95 and 1.3 times the respective limit load. For a/W = 0.1, while Q is independent
of distance from the crack tip at low load levels, at the highest load level there is a strong
dependence on distance. In contrast the Q value for a/W = 0.5 remains sensibly independent of
distance well into the fully plastic regime. The definition of Q and its relationship to the elastic T
stress is closely tied to its independence of distance from the crack tip. Thus the definition of Q via
the Tstress will not work for this geometry. Indeed it is clear from Fig. 13(a) that if Q is evaluated
at say r = 0.2 J/ao then it would be uniformly decreasing with increasing load. The reason that Q
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figuration B.

has been evaluated at r = 2 J/ao is because it is known that the crack tip opening displacement is
of the order of J/ao. Therefore for distances less than J/ao finite strain effects will dominate. In
order for a solution based on small strain theory, as the J-Q theory is, to be useful it must dominate
over regions greater than J/ao. It is still permissible to use the Q values in Fig. 13(a) at high load
levels though whether this is an appropriate Q value will depend on what is the relevant physical
distance for the material.
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8. Effect of biaxiality on driving force for cleavage fracture

Under plane strain conditions increasing the biaxiality affects both J and Q~at the same level
of remote load, (J';' !(Jlh increasing B leads to an increase in Q and a decrease in the magnitude of
J, (the latter is not immediately obvious from the normalisations used in the previous sections).
Thus biaxial loading can lead to a decrease or an increase in the crack tip stresses and hence to an
increase or decrease in the likelihood of cleavage fracture. This competing effect is illustrated in
Fig. 14. It may be seen that at low load biaxiality B has little effect on J or Q, but as the load
increases, increasing biaxiality leads to a dramatic decrease in J relative to the uniaxial case, Fig.
14(a) and an increase in Q, Fig. 14(b).

A direct comparison in terms of the near tip stress is next considered. Center cracked panels
with a/ W = 0.5 and B = 0 and 0.5 are examined. to quantify the combined effects of J and Q the
stresses along the ligament are plotted at different remote stress levels for the two geometries in
Fig. 15. Distances here are normalised by crack length a. At low loads the stress distributions are
almost identical and correspond to the small scale yielding T = 0 solution. At intermediate loads
:r;'/(Jo = 0.6, the loss of constraint experienced by the uniaxially loaded specimen is the dominant
;::ffect and the distribution for the biaxially loaded specimen is above that of the uniaxially loaded
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Fig. 12. Comparison between numerical Qvalues and T stress estimates for plane strain conditions, configuration A.

:;pecimen. At even higher load (J~ lao = 1.0 the effect of J dominates so the uniaxial specImen
,~xperiences higher crack tip stresses than the biaxially loaded specimen.

An approach based on JIe would predict that the biaxially loaded specimen will always fail at a
load equal to or above that of a uniaxially loaded specimen. However if the effect of constraint is
included the absolute size of the specimens will determine which will fail first. In Fig. 16(a) and
lb) a typical cleavage toughness Jc(Q) locus (Sumpter and Forbes, 1992) is shown by the solid
line. The equation for this curve is J, = J IC(l-0.2Q)6, The J-Q load histories for B = 0 and
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B = 0.5 are also shown with the corresponding load levels indicated at a number of points. Figure
16(a) considers a specimen where a = 250 J/cao. In this case it is seen that the uniaxially loaded
specimen will fail first at a load of about a::;/ao = 0.85 while the biaxially loaded specimen will fail
at a.c;;,/ao ~ 0.9. In contrast, Fig. 16(b) describes the behaviour for a larger specimen with a = 1000
J/<.ao, in this case both panels will fail at the same load of a';;/ao ~ 0.7. Similar comparisons have
been made in Chao and Ji (1995) where the A 2 constraint parameter has been used to compare the
J value at cleavage for different crack geometries. An analysis has been carried out in Dodds et al.
(1993) for surface cracks under biaxial and uniaxial loading. Their conclusions are consistent with
those presented here-for large specimens biaxial loading is more severe due to the large decrease
in constraint in the uniaxial specimen but for small specimens uniaxial loading is more severe due
to the higher J value. Of course these predictions assume that the specimen fails by cleavage. It is
possible that failure will initiate by ductile tearing at lower J values than would trigger cleavage.
This issue is not examined in this paper.
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4». Concluding remarks

In this work biaxially loaded panels under plane stress and plane strain have been examined. A
number of different normalisation functions are presented to allow calculation of J from exper
imental results. Solutions for the constraint parameter, Q, have also been presented and the ability
of the T stress to predict Q under plane strain loading is examined. For the case of plane strain
the limit load, J and Q values are all strongly dependent on biaxiality while for the case of plane
~ tress all quantities depend weakly on biaxiality. The effect of biaxiality in reducing J but increasing
Q has been discussed. Results have been presented for two different configurations, one where the
boundaries of the plate are allowed to move freely and one where the boundaries are constrained.
The decision as to which is more relevant will depend on the nature of the application of the
loading.
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